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The dreadful legal stuff: LoopTools is free software, but is not in the public domain. Instead it is covered by the GNU library general
public license. In plain English this means:

1) We don’t promise that this software works. (But if you find any bugs, please let us know!)

2) You can use this software for whatever you want. You don’t have to pay us.

3) You may not pretend that you wrote this software. If you use it in a program, you must acknowledge somewhere in your
publication that you’ve used our code.

If you’re a lawyer, you will rejoice at the exact wording of the license at http://www.fsf.org/copyleft/lgpl.html.

LoopTools is available from http://www.feynarts.de/looptools.

FormCalc is available from http://www.feynarts.de/formcalc.

FeynArts is available from http://www.feynarts.de.

FF is available from ftp://ftp.nikhef.nl/pub/ff/FF.html.

If you make this software available to others please provide them with this manual, too. There exists a mailing list where updates
will be announced. To subscribe to this list, send a mail (any text) to hahn-looptools-subscribe@particle.uni-karlsruhe.de.

If you find any bugs, or want to make suggestions, or just write fan mail, address it to:

Thomas Hahn
Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut)
Föhringer Ring 6
D–80805 Munich, Germany
e-mail: hahn@feynarts.de
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1 LoopTools

LoopTools is a package for evaluation of scalar and tensor one-loop integrals based on the
FF package by G.J. van Oldenborgh [vOV90]. It provides the actual numerical imple-
mentations of the functions appearing in FormCalc output. These are the scalar one-loop
functions of FF and the 2-, 3-, 4-, and 5-point tensor-coefficient functions in the conven-
tions of [De93]. LoopTools offers three interfaces, Fortran, C++, and Mathematica, so most
programming tastes should be served.

1.1 Installation

To compile the package, a Fortran 77 compiler and the GNU C compiler (gcc) are re-
quired.

LoopTools comes in a compressed tar archive LoopTools-2.5.tar.gz. Execute the fol-
lowing commands to unpack and compile the package.

gunzip -c LoopTools-2.5.tar.gz | tar xvf -

cd LoopTools-2.5

./configure

make

make install

make clean

The configure script finds out the necessary system information for the compilation.
make then makes the following objects in the LoopTools/$HOSTTYPE directory:

lib/libooptools.a the LoopTools library
include/looptools.h the include file for Fortran
include/clooptools.h the include file for C/C++
bin/lt the LoopTools command-line executable
bin/fcc a script to aid C/C++ compilation
bin/LoopTools the MathLink executable

Use “make lib” to build only the library part (without the MathLink executable).
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6 CHAPTER 1. LOOPTOOLS

The resulting directory structure is

LoopTools/ the LoopTools directory
LoopTools/$HOSTTYPE/ directory for the compiled programs and libraries
LoopTools/include/ directory of the include files
LoopTools/A/ directory for the one-point functions
LoopTools/B/ directory for the two-point functions
LoopTools/C/ directory for the three-point functions
LoopTools/D/ directory for the four-point functions
LoopTools/E/ directory for the five-point functions
LoopTools/util/ directory for utility routines
LoopTools/tools/ scripts for compilation

HOSTTYPE is an environment variable that is set by most shells to a string identifying the
system, e.g. alpha, hp9000s700, or i586-linux. Its purpose as a directory name is to
separate the binaries for different platforms. To see what its value is on your system,
type the following command at the shell prompt:

tcsh -c "echo $HOSTTYPE"

In contrast to the original FF library, the LoopTools libraries and executables depend on
no additional files (error message catalogues etc.), so they may be installed in some
“public” place instead of LoopTools/$HOSTTYPE. To this end, configure with e.g.

./configure --prefix=/usr/local

whereupon make install will put the libraries, include files, and executables in
/usr/local/lib, include, and bin, respectively. (Note: To write on /usr/local, su-
peruser privileges are usually required.)



1.2. ONE-LOOP INTEGRALS 7

1.2 One-Loop Integrals

Consider the following general one-loop diagram.

.

.

.

p1 p2

pN−1pN

q

q + k1

q + kN−1

m1

m2

mN

The integral contained in this diagram is

TN
μ1...μP

=
(2πμ)4−D

iπ2

∫
dDq

qμ1 · · · qμP[
q2 − m2

1

] [
(q + k1)2 − m2

2

] · · · [(q + kN−1)2 − m2
N

] (1.1)

where the momenta ki that appear in the denominators are related to the external mo-
menta pi as

p1 = k1 , p2 = k2 − k1 , . . . pN = kN − kN−1 ,

k1 = p1 , k2 = p1 + p2 , . . . kN =
N

∑
i=1

pi .
(1.2)

The representation given in (1.1) is correct for dimensional regularization or dimen-
sional reduction. (In the latter case the integrals are kept D-dimensional although the
rest of the algebra is performed in 4 dimensions.) μ plays the rôle of a renormalization
scale that keeps track of the correct dimension of the integral in D space–time dimen-
sions. In constrained differential renormalization the mass scale enters in a conceptually
different way; however, the dependence of the one-loop integrals on μ is the same as
for dimensional regularization (for details see [HaP98]).

The denominators arise from the propagators running in the loop. P, the number of
q’s in the numerator, determines the Lorentz tensor structure of the whole integral, i.e.
P = 0 denotes a scalar integral, P = 1 a vector integral, etc. From the definition it
is obvious that the integrals are symmetric under permutation of the Lorentz indices.
The q’s in the numerator arise typically from fermion propagators or from vertices that
correspond to terms with derivatives in the Lagrangian.

The nomenclature is A for T1, B for T2, etc. The scalar integrals are denoted by a sub-
scripted zero: A0, B0, etc.
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1.2.1 Tensor Coefficients

The integrals with a tensor structure can be reduced to linear combinations of Lorentz-
covariant tensors constructed from the metric tensor gμν and a linearly independent set
of the momenta [PaV79]. The choice of this basis is not unique.

LoopTools provides not the tensor integrals themselves, but the coefficients of these
Lorentz-covariant tensors. It works in a basis formed from gμν and the momenta ki,
which are the sums of the external momenta pi (see Eq. (1.2)) [De93]. In this basis the
tensor-coefficient functions are totally symmetric in their indices. For the integrals up
to the four-point function the decomposition reads explicitly

Bμ = k1μB1 ,

Bμν = gμν B00 + k1μk1ν B11 ,

Cμ = k1μC1 + k2μC2 =
2

∑
i=1

kiμCi ,

Cμν = gμνC00 +
2

∑
i, j=1

kiμkjνCij ,

Cμνρ =
2

∑
i=1

(
gμνkiρ + gνρkiμ + gμρkiν

)
C00i +

2

∑
i, j,�=1

kiμkjνk�ρCij� ,

Dμ =
3

∑
i=1

kiμDi ,

Dμν = gμν D00 +
3

∑
i, j=1

kiμkjν Dij ,

Dμνρ =
3

∑
i=1

(
gμνkiρ + gνρkiμ + gμρkiν

)
D00i +

3

∑
i, j,�=1

kiμkjνk�ρDij� ,

Dμνρσ = (gμν gρσ + gμρgνσ + gμσgνρ)D0000

+
3

∑
i, j=1

(
gμνkiρkjσ + gνρkiμkjσ + gμρkiνkjσ

+ gμσkiνkjρ + gνσkiμkjρ + gρσkiμkjν
)
D00i j

+
3

∑
i, j,�,m=1

kiμkjνk�ρkmσ Dij�m .

Of all scalar and tensor-coefficient functions implemented in LoopTools, only A0, B0, B1,
B00, B11, B001, B111, B′

00, the C coefficients with at least two indices zero, and the D coeffi-
cients with at least four indices zero are actually UV divergent.
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1.2.2 Conventions for the Momenta

A large source of mistakes is the way of specifying the momenta in the one-loop inte-
grals. The prime error in this respect is the confusion of the external momenta pi with
the momenta ki appearing in the denominators, which are the sums of the pi (see Eq.
(1.2)).

Consider for example the following diagram:

p1

p2

p3

q

q + k1

q + k2

m1

m2

m3

The three-point function corresponding to this diagram can be written either in terms
of the external momenta as

C
(
p2

1, p2
2, (p1 + p2)2, m2

1, m2
2, m2

3

)

or in terms of the momenta ki as

C
(
k2

1, (k1 − k2)2, k2
2, m2

1, m2
2, m2

3

)
.

In both cases the same function is called with the same arguments since of course k1 = p1

and k2 = p1 + p2. (The arguments are given in the conventions of LoopTools.)

It is however important to realize that LoopTools functions like C1 and C112 are the coeffi-
cients respectively of k1μ and k1μk1νk2ρ, not of p1μ and p1μp1ν p2ρ.
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1.3 Functions provided by LoopTools

The distinction in the following for real and complex arguments is for Fortran and
C/C++ only. Mathematica automatically chooses the right version.

1.3.1 One-point function

Function call (a real) (a complex) Description

A0(a) A0C(a) one-point function

A00(a) A00C(a) coefficient of gμν

a = m2

m =
(2πμ)4−D

iπ2

∫ (numerator) dDq
q2 − m2

1.3.2 Two-point functions

Function call (a real) (a complex) Description

B0i(id, a) B0iC(id, a) two-point tensor coefficient id

Bget(a) BgetC(a) all two-point tensor coefficients

special cases:

B0(a) B0C(a) scalar two-point function

B1(a) B1C(a) coefficient of pμ

B00(a) B00C(a) coefficient of gμν

B11(a) B11C(a) coefficient of pμpν

B001(a) B001C(a) coefficient of gμν pρ

B111(a) B111C(a) coefficient of pμpν pρ

a = p2, m2
1, m2

2

p p

m1

m2

=
(2πμ)4−D

iπ2

∫ (numerator) dDq[
q2 − m2

1

] [
(q + p)2 − m2

2

]
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1.3.3 Derivatives of Two-point functions

Function call (a real) (a complex) Description

B0i(id, a) B0iC(id, a) two-point tensor coefficient id

Bget(a) BgetC(a) all two-point tensor coefficients

special cases:

DB0(a) DB0C(a) derivative of B0

DB1(a) DB1C(a) derivative of B1

DB00(a) DB00C(a) derivative of B00

DB11(a) DB11C(a) derivative of B11

DB001(a) DB001C(a) derivative of B001

DB111(a) DB111C(a) derivative of B111

a = p2, m2
1, m2

2 as above

All derivatives are with respect to the momentum squared. Note that the B0i and Bget

coefficients include the derivatives, so there is no DB0i or DBget.
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1.3.4 Three-point functions

Function call (a real) (a complex) Description

C0i(id, a) C0iC(id, a) three-point tensor coefficient id

Cget(a) CgetC(a) all three-point tensor coefficients

special case:

C0(a) C0C(a) scalar three-point function

a = p2
1, p2

2, (p1 + p2)2, m2
1, m2

2, m2
3

p1

p2

p3

m1

m2

m3

=
(2πμ)4−D

iπ2

∫ (numerator) dDq[
q2−m2

1

] [
(q + p1)2 − m2

2

]
[
(q + p1 + p2)2 − m2

3

]

1.3.5 Four-point functions

Function call (a real) (a complex) Description

D0i(id, a) D0iC(id, a) four-point tensor coefficient id

Dget(a) DgetC(a) all four-point tensor coefficients

special case:

D0(a) D0C(a) scalar four-point function

a = p2
1, p2

2, p2
3, p2

4, (p1 + p2)2, (p2 + p3)2, m2
1, m2

2, m2
3, m2

4

p1 p2

p3p4

m1

m2

m3

m4

=
(2πμ)4−D

iπ2

∫ (numerator) dDq[
q2 − m2

1

][
(q + p1)2 − m2

2

]
[
(q + p1 + p2)2 − m2

3

]
[
(q + p1 + p2 + p3)2 − m2

4

]
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1.3.6 Five-point functions

Function call (a real) (a complex) Description

E0i(id, a) E0iC(id, a) five-point tensor coefficient id

Eget(a) EgetC(a) all four-point tensor coefficients

special case:

E0(a) E0C(a) scalar five-point function

a = p2
1, p2

2, p2
3, p2

4, (p1 + p2)2, (p2 + p3)2, (p3 + p4)2, (p4 + p5)2, (p5 + p1)2,

m2
1, m2

2, m2
3, m2

4, m2
5

p1 p2

p3

p4

p5

m1

m2

m3

m4m5

=
(2πμ)4−D

iπ2

∫ (numerator) dDq[
q2 − m2

1

][
(q + p1)2 − m2

2

]
[
(q + p1 + p2)2 − m2

3

]
[
(q + p1 + p2 + p3)2 − m2

4

]
[
(q + p1 + p2 + p3 + p4)2 − m2

5

]

1.3.7 Tensor Functions

The “N0i” functions (B0i, C0i, etc.) are generic functions for all tensor coefficients of
the respective N-point function. A specific coefficient is selected with the first argument
(denoted id in the following). For example:

C0i(cc0, ...) = C0(. . . )

C0i(cc00,...) = C00(. . . )

C0i(cc112,...) = C112(. . . ) etc.

The indices are symmetric and therefore the identifiers are assumed to be ordered, i.e.
there is only cc122 but not cc212.

Internally, what happens when an N0i is called is that actually all N-point coefficients
for the given set of momenta and masses are calculated. This is because there are a lot
of intermediate results which would have to be recalculated every time the function is
called for a different coefficient. These coefficients are then of course stored so that re-
peated calls to N0i with the same set of arguments will simply retrieve the value from
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memory. So in a very real sense the identifiers cc0, cc001, etc. can be thought of as array
indices (in fact, they are just integer constants to the compiler). In an unoptimized pro-
gram, the savings incurred by this mechanism can be sizeable: typically 90% of integrals
requested can be retrieved from cache.

The “Nget” functions (Bget, Cget, etc.) compute all N-point coefficients together. Their
use is slightly more involved (one needs to keep track of an extra index) but results in
faster code since only one cache lookup is needed, and not one for every coefficient.

1.3.8 Cache Mechanism

The cache functionality of LoopTools has already been alluded to above and for small
calculations, the cache is just transparent to the user. In large calculations, however, it
is worthwhile to flush the cache at strategic places, to reduce lookup times and avoid
memory overflows.

For example, when computing a cross-section in a loop over the energy, it makes sense
to flush the cache every time one moves to another energy. Most loop integrals depend
on the energy (and the few that don’t are not very time-consuming to compute), so
chances are slim that any of the cache integrals can be recycled.

Cache memory is actually never really ‘freed’ but only marked as overwritable. This is
because, in a setup like above, every turn of the loop computes exactly the same number
of integrals, so freeing and re-allocating the memory would just produce additional
overhead.

There are two ways to clear the cache. To completely remove all integrals from the
cache, execute

call clearcache (Fortran)

clearcache(); (C/C++)

ClearCache[] (Mathematica)

Alternately, the current cache pointers can be stored using

call markcache (Fortran)

markcache(); (C/C++)

MarkCache[] (Mathematica)

and restored, at a later point, using
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call restorecache (Fortran)

restorecache(); (C/C++)

RestoreCache[] (Mathematica)

One can for example do the energy-independent integrals first, mark the cache, and
restore it after every turn of the loop over the energy.

Another issue concerns the depth of the comparison when looking up cache entries.
Floating-point variables should in general never be compared verbatim, i.e. one should
always convert a .eq. b into abs(a - b) .lt. ε, because one does not want the compari-
son to fail due to numerical noise.

For technical reasons, the cache-lookup precision is specified through the number of
bits (rather than an ε) in LoopTools:

call setcmpbits(b) b = getcmpbits() (Fortran)

setcmpbits(b); b = getcmpbits(); (C/C++)

SetCmpBits[b] b = GetCmpBits[] (Mathematica)

export LTCMPBITS=b (bash)

setenv LTCMPBITS b (tcsh)

The defaults are 62 for double precision (a double precision number has 64 bits of which
52 are the mantissa) and 64 for quadruple precision (a quadruple precision number has
128 bits of which 112 are the mantissa).

1.3.9 Quadruple Precision

For most calculations, double precision is quite sufficient to yield satisfyingly accurate
results. In some cases, however, cancellations between diagrams can cause double-digit
loss of precision. Since the mantissa of a double precision number has only about 15
decimal digits, the result may thus be correct only to very few digits.

Quadruple precision (16-byte real and 32-byte complex variables) has a mantissa of ap-
proximately 33 decimal digits and can cope with even severe cancellations. Quadruple
precision does slow down the calculation, though, and is also not available on all plat-
forms.

The procedure to build the quadruple-precision version is as follows. Configure as
usual, then run make as
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make -f makefile.quad-<tag>

make -f makefile.quad-<tag> install

where the makefile is one of the following:

Alpha HP Tru64 Unix makefile.quad-alpha

ifort Linux, Mac OS makefile.quad-ifort

xlf IBM RS6000, Mac OS (PPC) makefile.quad-xlf

The resulting libraries and executables carry the suffix -quad, e.g. libooptools-quad.a.

1.3.10 Versions and Debugging

For checking the results, LoopTools has alternate implementations of various functions
included, most of which are based on an implementation by Denner. The user can
choose at run-time whether the default version ‘a’ (mostly FF) or the alternate version
‘b’ (mostly Denner) is used and whether checking is performed. This is determined by
the version key:

0*key compute version ‘a’,
1*key compute version ‘b’,
2*key compute both, compare, return ‘a’,
3*key compute both, compare, return ‘b’.

Usage is as in

call setversionkey(k) k = getversionkey() (Fortran)

setversionkey(k); k = getversionkey(); (C/C++)

SetVersionKey[k] k = GetVersionKey[] (Mathematica)

export LTVERSION=k (bash)

setenv LTVERSION k (tcsh)

where k is e.g. of the form 2*KeyC0 + 3*KeyD0. The following keys for alternate ver-
sions are currently available: KeyA0, KeyBget, KeyC0, KeyD0, KeyEget, KeyEgetC. KeyAll
comprises all of these. These symbols are not available in the shell, therefore it is most
common to set all bits of the version key by putting the value −1.

The comparison by default takes a relative deviation of 10−12 as a threshold for issuing
warnings, but this can be changed with
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call setmaxdev(ε) ε = getmaxdev() (Fortran)

setmaxdev(ε); ε = getmaxdev(); (C/C++)

SetMaxDev[ε] ε = GetMaxDev[] (Mathematica)

export LTMAXDEV=ε (bash)

setenv LTMAXDEV ε (tcsh)

Debugging output can be turned on likewise with e.g.

call setdebugkey(k) k = getdebugkey() (Fortran)

setdebugkey(k); k = getdebugkey(); (C/C++)

SetDebugKey[k] k = GetDebugKey[] (Mathematica)

export LTDEBUG=k (bash)

setenv LTDEBUG k (tcsh)

where k is e.g. of the form DebugC + DebugD. Identifiers range from DebugB to DebugE

and are summarized by DebugAll. Again, these identifiers are not available in the shell,
so the most common solution is to set all bits by choosing −1.

The integrals are listed in the output with a unique serial number. If the list of integrals
becomes too long, one can select only a range of serial numbers for viewing, as in

call setdebugrange( f, t) (Fortran)

setdebugrange( f, t); (C/C++)

SetDebugRange[ f, t] (Mathematica)

export LTRANGE= f-t (bash)

setenv LTRANGE f-t (tcsh)

This makes it easy to monitor ‘suspicious’ integrals.

1.3.11 On Warning Messages and Checking Results

Computing reliable numeric values for the one-loop integrals is a highly non-trivial task
because of possible cancellations, and requires to take into account many special cases
to achieve a reasonable accuracy also in “problematic” corners of phase space. Such
regions are typically thresholds and high energies.

LoopTools is built on the FF library which tries very hard to produce correct values.
Nevertheless, it is essential to have means of cross-checking the results, particularly if
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such tell-tale signs of numerical problems as unsmoothness of a curve (e.g. unexpected
bumps or peaks in the cross-section) are observable.

FF has a built-in warning system that checks for critical loss of accuracy. Unfortunately,
the warnings issued by FF concerning the loss of accuracy are somewhat overzealous,
and particularly for a large number of consecutive calls to FF (e.g. when computing a
cross-section over a sizeable region of phase space) can add up to ridiculous numbers,
e.g. “lost a factor 105.” Unless a very detailed checking of these warnings is performed,
they are pretty useless and tend to numb the user to a degree where severe errors are
easily overlooked. For this reason, the FF warning system has largely been disabled
in LoopTools. FF does report the estimated number of digits lost, however, on which
LoopTools acts as follows:

• If more than the Warning Digits (default: 9) are lost, a more thorough version
of the integral is used (which uses e.g. different permutations of the input argu-
ments). The Warning Digits can be set as follows:

call setwarndigits(d) d = getwarndigits() (Fortran)

setwarndigits(d); d = getwarndigits(); (C/C++)

SetWarnDigits[d] d = GetWarnDigits[] (Mathematica)

export LTWARN=d (bash)

setenv LTWARN d (tcsh)

• If in the end more than the Error Digits (default: 100) are reported lost, LoopTools
invokes the alternate version (see Sect. 1.3.10). The Error Digits are set via

call seterrdigits(d) d = geterrdigits() (Fortran)

seterrdigits(d); d = geterrdigits(); (C/C++)

SetErrDigits[d] d = GetErrDigits[] (Mathematica)

export LTERR=d (bash)

setenv LTERR d (tcsh)

1.3.12 Ultraviolet, Infrared, and Collinear Divergences

Ultraviolet divergences are regularized dimensionally in LoopTools. The cancellation
of the divergences can be checked with the two variables Δ and μ. The first one replaces
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the actual divergence: Δ = 2/(4 − D) − γE + log 4π. The second one is the dimensionful
parameter introduced to keep the integral’s mass dimension the same in all dimensions
D (see Sect. 1.2).

The initial value for Δ is 0, the MS value. Putting Δ = −2 reproduces the one-loop
functions of constrained differential renormalization as published in [dACTP98]. Δ is
actually a redundant parameter since μ can be adjusted to have the same effect: μ2

new =
eΔμ2

old.

A UV-finite result must not depend on either Δ or μ. It is hence straightforward to check
UV finiteness numerically: calculate the expression with two different values for Δ (or μ,
or both), and check whether the result stays the same within numerical precision. Note
that μ enters logarithmically; this means that to decisively check whether an expression
is really independent of μ, it must be varied on a large scale, e.g. from 1 to 1010.

Infrared divergences appear in processes with charged external particles. They orig-
inate from the exchange of virtual photons. More precisely they come from diagrams
containing structures of the form

.

.

.

ki

kj

γ loop

m2
j−1 = k2

j

m2
i = k2

i

Such diagrams are IR divergent because the photon is massless; if the photon had a mass
λ, the divergent terms would be proportional to log λ. NB: such a photon mass should
not be introduced by hand: if a requested integral is IR divergent, LoopTools automatically
substitutes regularization parameters (see below).

In QCD calculations, the custom is rather to regularize the IR divergences dimension-
ally, in which case they show up as poles in 1/ε and 1/ε2.

• For λ2 > 0, photon-mass regularization is used with a photon mass λ, where λ is
treated as an infinitesimal quantity, however, which means that terms of order λ

or higher are discarded (i.e. only the log λ terms are kept).
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Since the final result should not depend on λ after successful removal of the IR
divergences, λ can be given an arbitrary numerical value despite its infinitesimal
character.

To test IR finiteness numerically, one can proceed just as in the ultraviolet case:
calculate the expression for two values of λ and check whether the results agree.
As mentioned, the λ-dependence is logarithmic, hence one has to change λ on a
big scale (say from 1 to 1010) to decisively check IR finiteness.

• In dimensional regularization, λ2 = −2 returns the coefficient of ε−2, λ2 = −1
the coefficient of ε−1, and λ2 = 0 (indeed, all other non-positive values) the finite
piece.

In this case, testing IR finiteness numerically proceeds through checking the coef-
ficients of ε−1, ε−2 coefficients, which have to add up to zero in observable quan-
tities. This can be done particularly conveniently through the LTLAMBDA environ-
ment variable (see below), such that no recompilation of the program is necessary.

Collinear singularities arise for vanishing momentum-square of an external leg sand-
wiched between two massless internal propagators, as in:

.

.

.

.

.

.

p2
i = m2

f � s

m1 = 0

m2 = 0

The divergence is logarithmic of the form log m2
f /s, so the fermion mass acts as a natural

regulator. In sufficiently inclusive observables, these logs cancel due to the Kinoshita–
Lee–Nauenberg theorem [KLN]. In non-confined theories, for example the electroweak
Standard Model, it is possible to observe non-inclusive observables where the large
effects due to small fermion masses can be seen.

In QCD it is again customary to regularize the collinear divergences dimensionally, such
that instead of large logs the divergences manifest themselves as poles in 1/ε and 1/ε2.

• For dimensional regularization (QCD), the collinear divergences are controlled in
the same way as the IR divergences above: setting λ = −2,−1, 0 returns the coef-
ficients of 1/ε2, 1/ε, and the finite piece, respectively.
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• To facilitate mass regularization, LoopTools acts on the variable m2
min in the follow-

ing way: On calling a loop integral, all arguments less than m2
min are set to zero. If

it is discovered that the function truncated thus has a collinear divergence, m2
min is

substituted back into the p2
i . This procedure makes it possible for LoopTools to use

the regulator mass only in actually divergent configurations and avoid numerical
problems due to small finite masses elsewhere.

The following routines allow to set and retrieve the regularization parameters. Note
that μ, λ, and mmin always enter squared.

call setdelta(Δ) Δ = getdelta() (Fortran)

call setmudim(μ2) μ2 = getmudim()

call setlambda(λ2) λ2 = getlambda()

call setminmass(m2
min) m2

min = getminmass()

setdelta(Δ); Δ = getdelta(); (C/C++)

setmudim(μ2); μ2 = getmudim();

setlambda(λ2); λ2 = getlambda();

setminmass(m2
min); m2

min = getminmass();

SetDelta[Δ] Δ = GetDelta[] (Mathematica)

SetMudim[μ2] μ2 = GetMudim[]

SetLambda[μ2] λ2 = GetLambda[]

SetMinMass[m2
min] m2

min = GetMinMass[]

export LTDELTA=Δ (bash)

export LTMUDIM=μ2

export LTLAMBDA=λ2

export LTMINMASS=m2
min

setenv LTDELTA Δ (tcsh)

setenv LTMUDIM μ2

setenv LTLAMBDA λ2

setenv LTMINMASS m2
min
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1.4 Using LoopTools with Fortran

Some technical details concerning compilation:

• Specify the location of LoopTools once in an environment variable (this saves a lot
of typing later on). For example, in the tcsh, use

setenv LT $HOME/LoopTools/$HOSTTYPE

When compiling a program that uses LoopTools, use

-I$LT/include (source files) -L$LT/lib -looptools

on the f77 command line. As Unix linker are one-pass linkers, the library flags
(-L..., -l...) must come after the Fortran or object files on the command line.
In a makefile, you have to use parentheses around the environment variables, i.e.
$(LT) instead of $LT.

• Fortran files that use LoopTools must have the extension .F, not .f. This tells the
Fortran compiler that the files need to be run through the C preprocessor first. If
you are using an older Fortran compiler which does not recognize the .F exten-
sion, use the script F77 in the $LT/bin subdirectory instead of the normal f77.

To use the LoopTools functions in a Fortran program, the file looptools.h must be in-
cluded in every function or subroutine in which the LoopTools functions are called. Be-
fore using any LoopTools function, the subroutine ffini must be called. At the end of
the calculation ffexi may be called to obtain a summary of errors.

A very elementary program would for instance be

program simple_program

#include "looptools.h"

call ffini

print *, B0(1000D0, 50D0, 80D0)

call ffexi

end

Note that, as for all preprocessor commands, the # must stand at the beginning of the
line. It is important to include the looptools.hvia the preprocessor command #include
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instead of the include directive many Fortran compilers offer. This is because prepro-
cessor variables are used in looptools.h which would otherwise not take effect. Inci-
dentally, if you do run this program, the result should be (-4.40593283,2.7041431).

To give a more realistic example, here is the calculation of the bosonic part of the Higgs
self-energy in the electroweak Standard Model.

program HiggsSE

#include "looptools.h"

double precision s

double complex SigmaH

external SigmaH

call ffini

do s = 100, 1000, 50

print *, s, " ", SigmaH(s)

enddo

call ffexi

end

double complex function SigmaH(k2)

double precision k2

#include "looptools.h"

double precision MH2, MZ2, MW2, Alfa, pi, SW2

parameter (MH2 = 100D0**2,

+ MZ2 = 91.188D0**2,

+ MW2 = 80.39D0**2,

+ Alfa = 1/137.0359895D0,

+ pi = 3.14159265358979D0,

+ SW2 = 1 - MW2/MZ2)

SigmaH = Alfa/32D0/pi/SW2/MW2*

+ ( 3*MH2*A0(MH2) + 9*MH2**2*B0(k2, MH2, MH2)

+ + 2*(MH2**2 - 4*MW2*(k2 - 3*MW2))*B0(k2, MW2, MW2)

+ + 2*(6*MW2 + MH2)*A0(MW2) - 24*MW2**2

+ + (MH2**2 - 4D0*MZ2*(k2 - 3*MZ2))*B0(k2, MZ2, MZ2)

+ + (6*MZ2 + MH2)*A0(MZ2) - 12*MZ2**2 )
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end

1.5 Using LoopTools with C++

Some technical details:

• Like in the Fortran case, it saves a lot of typing to specify the location of LoopTools
once in an environment variable. For example, in the tcsh, use

setenv LT $HOME/LoopTools/$HOSTTYPE

Then compile the programs that use LoopTools with the following command:

$LT/bin/fcc -I$LT/include (source files) -L$LT/lib -looptools

fcc is a script to compile C and C++ programs and link them with Fortran li-
braries, in this case libooptools.a. Note that in a makefile, you have to use
parentheses around the environment variables, i.e. $(LT) instead of $LT.

• In bare C there is no intrinsic type complex, and using things like structs is rather
annoying. Therefore, I have made no attempt to implement the tensor package in
bare C. Unfortunately, even in C++ the type complex is anything but standardized.
As it stands, the package will compile with g++ 2.7.2 and higher. Using any non-
GNU C++ compiler is at your own risk. If you really must work with a different
compiler, the most likely cause of problems is the different naming convention for
complex variables. If so, the following compiler switch will help:

-Ddouble_complex=mycomplexname

where mycomplexname is your compiler’s name for the complex data type, usually
something like complex, Complex etc.

To use the LoopTools functions in a C++ program, the file clooptools.h must be in-
cluded. Similar to the Fortran case, before making the first call to any LoopTools func-
tion, ffini() must be called and at the end ffexi() may be called to get a summary of
errors.



1.5. USING LOOPTOOLS WITH C++ 25

In C++, an elementary program would be

#include <fstream.h> // for cout

#include "clooptools.h"

int main() {

ffini();

cout << B0(1000., 50., 80.) << endl;

ffexi();

}

In the following the same example as for the Fortran case is given: the bosonic part of
the Higgs self-energy in the electroweak Standard Model. At first sight, the C++ code
looks more appealing, but remember that double_complex is not an intrinsic data type
in C++ and that certainly compilation time and usually also the performance of the
resulting program will be worse than in Fortran.

#include <complex.h>

#include <fstream.h>

#include "clooptools.h"

#define MH2 (100.*100.)

#define MZ2 (91.188*91.188)

#define MW2 (80.4*80.4)

#define Alfa (1./137.0359895)

#define pi 3.14159265358979

#define SW2 (1. - MW2/MZ2)

static double_complex SigmaH(double k2) {

return Alfa/32./pi/SW2/MW2*

( 3*MH2*A0(MH2) + 9*MH2*MH2*B0(k2, MH2, MH2)

+ 2*(MH2*MH2 - 4*MW2*(k2 - 3*MW2))*B0(k2, MW2, MW2)

+ 2*(6*MW2 + MH2)*A0(MW2) - 24*MW2*MW2

+ (MH2*MH2 - 4*MZ2*(k2 - 3*MZ2))*B0(k2, MZ2, MZ2)

+ (6*MZ2 + MH2)*A0(MZ2) - 12*MZ2*MZ2 );

}
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int main() {

double s;

ffini();

for( s = 100; s <= 1000; s += 50 )

cout << s << "\t" << SigmaH(s) << endl;

ffexi();

}

1.6 Using LoopTools with Mathematica

Modify your path to include ~/LoopTools/$HOSTTYPE/bin, e.g. in tcsh use

set path=($path $HOME/LoopTools/$HOSTTYPE/bin)

It is probably a good idea to include this statement e.g. in .cshrc.

The Mathematica interface is probably the simplest to use:

In[1]:= Install["LoopTools"]

Out[1]= LinkObject[LoopTools, 1, 1]

In[2]:= B0[1000, 50, 80]

Out[2]= -4.40593 + 2.70414 I

The Nget routines return a list of rules containing all tensor coefficients, e.g.

In[3]:= Cget[80, 80, 10000, 300, 100, 200] //InputForm

Out[3]//InputForm=

{cc0 -> 0.0003683322958259527 - 0.00144304878124425*I,

cc1 -> 0.00003691991146686607 + 0.0008063637675463306*I,

cc2 -> -0.0002186870966525929 + 0.0003255577507551812*I,

cc00 -> -1.468122864600498 + 0.6620214671984382*I,

cc11 -> -0.0001383963649940767 - 0.0005211388919006447*I,



1.6. USING LOOPTOOLS WITH MATHEMATICA 27

cc12 -> 0.00005607420875500784 - 0.0001466442566605745*I,

cc22 -> 0.0001038232033882128 - 0.0001572866825209231*I,

cc001 -> 0.4339544374355454 - 0.1905346035793642*I,

cc002 -> 0.5179247985708856 - 0.2390535391455292*I,

cc111 -> 0.0001637407816195954 + 0.0003561351446381443*I,

cc112 -> -0.00001499429891688691 + 0.00008510756809075344*I,

cc122 -> -0.00002351641063613291 + 0.00005055502592614985*I,

cc222 -> -0.00005956786867352272 + 0.000101962969539097*I}

One-loop functions containing non-numeric arguments (e.g. B0[1000,MW2, MW2]) re-
main unevaluated. If it becomes necessary to switch off the evaluation of the LoopTools
functions, LoopTools can be uninstalled:

In[10^37]:= Uninstall[%1]



A The original FF Manual

A.1 Introduction

The evaluation of scalar loop integrals is one of the time consuming parts of radiative
correction computations in high energy physics. Of course the general solution has
long been known [tHV79], but the use of these formulae is not straightforward. If one
encodes the algorithms directly in a numerical language one finds that for most physical
configurations the answer is extremely unreliable due to numerical cancellations. It is
not at all difficult to find examples where more than 80 digits accuracy are lost.

There are two ways in which these problems have been solved. M. Veltman has pro-
grammed these algorithms using a very large precision (up to 120 digits) for the in-
termediate results in the program FormF, which enabled him to do some very compli-
cated calculations [PaV79]. However, these routines are written in assembler language
and thus only available on certain computers. Also, the use of multiple precision makes
them fairly slow — and even so there are many (soft t-channel) configurations for which
the answer is incorrect, or correct only for one permutation of the input parameters. The
other solution is to evaluate by hand all special cases needed and make sure that these
are numerically stable, in this way building a library of physically interesting cases. This
costs much time and has to be extended for every new calculation, as often the limits
taken are no longer valid.

We present here a set of Fortran routines that evaluate the one-loop scalar integrals
using a standard precision. The algorithms used have been published before [vOV90].
This paper describes version 1.0 which contains the following units:

• the scalar one, two, three, four and five-point functions, defined by

X0 =
1

iπ2

∫ dnQ
(Q2 − m2

1)((Q + P)2 − m2
2) · · · (A.1)

• the vector three and four-point functions,

• some determinants.

Planned additions are:

• The other Form factors à la FormF.

28
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• The six-point function.

Note however, that the reduction of these can be done analytically.

The aim of the routines is to provide a reliable answer for any conceivable (physical)
combination of input parameters. This has not been fully met in the case of the four-
point function, but an impressive list of cases does indeed work. Problems normally
occur when many parameters are (almost) equal, i.e. when an analytical calculation is
most feasible.

The layout of this paper is as follows. First we give a brief description of the design of
the package and some details that may be of of relevance to the user, like timings. Next
we give a complete user’s guide. The problems which might be encountered when
installing FF on a computer system are discussed in section A.3. The initialisation of the
routines, which has to be done by the user in the program which uses the FF routines, is
outlined in section A.4. The next section is about the use of the error reporting facilities,
which also need some assistance from the user. A list of the available routines for the
scalar n-point functions (section A.6) and determinants (section A.8) is given, listing
parameters, loss of precision and comments.

A.2 Brief description of the scalar loop routines

This section will give an overview of the structure of the scalar loop routines which
implement the algorithms of [vOV90]. The purpose of this is to provide a map for the
adventurous person who wants to understand what is going on. Some details of the
algorithms chosen are also given.

A.2.1 Overview

The language chosen is Fortran, mainly because so much of the calculations are done
with complex variables. There are currently about 26000 lines of code. Some of it is
repetitious, as many routines exist in a real and complex version which hardly differ.
Global names (subprograms, common blocks) almost all start with the letters FF, for
FormFactor (the only exceptions are the functions dfflo1, zfflo1, zfflog and zxfflg).
For this reason I refer to the set as the FF package. The third letter of the name often
indicates whether a routine is complex (z or c) or real. The real four-point function is
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thus calculated with the routine ffxd0, the complex dilogarithm in ffzli2. All common
blocks are included via a single include file, which also defines some constants such as
one and π in the precision currently used. I have tried hard to make switching between
real and double precision as easy as possible.

The packages roughly consists of six kind of routines:

• The high-level and user-callable routines, such as ffxd0.

• Dotproduct calculation routines, such as ffdot4.

• The determinant routines, such as ffdl4p; the number indicates the size of the
determinant and the letter the kind.

• Routines to get combinations of dilogarithms, for instance ffcxr; the names
roughly follow the names given in [vOV90].

• Low level routines: the logarithms, dilogarithms, η functions.

• Support routines: initialisation, the error and warning system, taylor series
boundaries and consistency checking.

The high-level routines first compute missing arguments such as the differences of the
input parameters. Next the parameters are permuted to a position in which the eval-
uation is possible. All dotproducts are calculated and from these the necessary deter-
minants are determined. In the case of the four-point function we now perform the
projective transformation and compute all transformed dotproducts and differences.
The determinants and dotproducts allow us to find the combinations of roots needed,
which are passed on to the routines which evaluate the combinations of dilogarithms.

The most difficult part is to anticipate the cancellations among the dilogarithms without
actually calculating them. This is usually done by comparing the arguments mapped to
the unit circle c′i, with a safety margin. Unfortunately the choices made are not always
the best, especially on the higher levels (complete C0’s or Si’s). This is the reason the
user can influence the possibilities considered with the flags l4also and ldc3c4, which
switch on or off the 16 dilogarithm algorithm and the expanded difference between two
three-point functions.

The dilogarithms are evaluated in ffxli2 and ffzli2. These expect their arguments to
lie in the region |z| < 1, Re(z) < 1/2 already, more general functions (used for testing)
are ffzxdl and ffzzdl. The algorithm used is the expansion in log(1 − z) described in
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[tHV79]. As the precision of the computer is unknown in advance fancy Chebychev
polynomials and the like are not used.

The values of the logarithms and dilogarithms are placed in a big array which is only
summed at the last moment. This is done to prevent false alarms of the warning system.
Every single addition in the whole program of which one cannot prove that both operands
have the same sign is checked for numerical problems with a line like

sum = x + y + z

xmax = max(abs(x),abs(y))

if ( abs(sum) .lt. xloss*xmax ) call ffwarn(n,ier,sum,xmax)

with xloss set to 1/8 by ffini. A theoretically better way would be to compare the
result to the partial sums. We are however only interested in the order of magnitude of
the cancellation, and for that this method suffices.

The only other place where one can lose significant precision is in taking the logarithm
of a number close to 1. All calls to the logarithm are checked by a wrapper routine for
this case. A routine dfflo1/zfflo1 is provided to evaluate log(1 − x).

Finally a word on the determinant routines. They use in general a very simplistic al-
gorithm to find the linearly independent combination of vectors which gives the most
accurate answer: try until it works. All sets are tried in order until the sum in no smaller
than xloss times the largest term. In the larger determinants this set is remembered and
tried first the next time the routine is called.

A.2.2 Timings

In table A.1 we give the timings of the scalar n-pint functions on different machines. The
numbers given can only be an indication as the path taken varies wildly with the com-
plexity of the problem. A numerical unstable set of parameters might mean much more
time spent in the determinant routines and a bit less in the dilogarithms for instance.
The flag ltest was turned off for these tests.

For a D0, approximately 10% of the time is spent in the dilogarithms, 50% in the deter-
minants and the rest in the sorting out and summing.
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machine B0 C0 D0 E0

NP1 0.2 ms 4.5 ms 13 ms 65 ms

Sun4 0.9 ms 8.1 ms 20 ms 90 ms

Apollo 10020 0.08 ms 1.5 ms 4.9 ms 24 ms

Atari ST 40 ms 400 ms 900 ms 5800 ms

Table A.1: Timings of the scalar n-point functions.

A.2.3 Tests

The B0 has been tested against FormF over all parameter space, the C0 for some 100
physical configurations and the D0 for about 30. The E0 is as yet untested (except for
internal consistency). The only differences were in very low t-channel configurations
and I have reason to distrust FormF. The limit is not approached smoothly, and very ex-
treme kinematical configurations such as those occurring in the ZEUS luminosity mon-
itor [vdH90] often give a DMPX. FF approaches the theoretically correct limit smoothly.

A.3 Installation

In this section the installation of the FF routines on a computer is discussed. We will
first discuss the problems which may be caused by the Fortran used. Next the use of
data files is discussed.

The routines have been written in standard (ANSI) Fortran 77, with a few exten-
sions, which most compilers allow. The package compiles without changes on the
Gould/Encore (fort), Apollo/SR10 (ftn), Meiko (mf77) and VAX (fortran/g float).
Changes are necessary for the Apollo/SR9 (ftn), Sun (f77), CDC (ftn5), Atari ST (Ab-
soft) and possibly other compilers.

The extensions used are:

• the use of tabs.

• the use of lower case letters.

• the use of implicit none.
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• the use of the include directive to include the file ’ff.h’, which contains parameters
and common blocks used throughout the package.

• the use of DOUBLE COMPLEX data type. In principle FF can also run in single pre-
cision, but the loss of 3–5 digits can often not be avoided in the evaluation of an
n-point function. This may leave too little information.

All these extensions can easily be removed with a good editor. The following commands
will convert the source to ANSI Fortran. (The syntax is that of the editor STEDI).

mark

/include ’ff.h’/

deleteline

read ff.h

/implicit none/=/implicit logical (a-z)/

/DBLE(/=/REAL(/

/DIMAG/=/AIMAG/

/DCMPLX/=/CMPLX/

/DOUBLE COMPLEX/=/COMPLEX/

end

# convert to uppercase

ctrl-u

# expand the tabs

te

Note that all names that have to be converted when switching from single to double
precision are in capitals. It is possible to run the package in double precision real and
single precision complex (the error reporting system might underestimate the accuracy
in this case). To convert to single precision real (for instance on a CDC) use

/DOUBLE PRECISION/=/REAL/

It may be necessary to convert to systems with other names for the double pre-
cision complex data types and functions (e.g. IBM). The double complex functions
to be transformed are zfflo1, zfflog and zxfflg. They are now declared as
DOUBLE COMPLEX function(args), change this to COMPLEX function*16(args).

Generic names for the intrinsic functions sqrt, log, and log10 are used everywhere, so
these need not be changed.
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Note that all subroutines have names starting with ff, the functions have the ff in the
middle of the name. It is hoped that this naming convention will minimise conflicts with
user-defined names. The author is aware of the possible conflict with the Cern-library
package ‘ffread’, but could not think up another key.

The FF package uses three data files: fferr.dat, ffwarn.dat and ffperm5.dat. The
mechanism for locating these is very simple: in the subroutine which reads these files
(ffopen and ffwarn in the file ffini) the variable fullname is defined. You will have
to fill in here a directory (readable by everyone using the routines) that contains the
datafiles∗.

A.4 Initialization

When using the FF routines a few initialisations have to be performed in the program
that calls these routines.

The common blocks used are all listed in the file ‘ff.h’. If your system does not auto-
matically save common blocks (like Absoft Fortran) it is easiest to include this file in the
main program.

Furthermore, before any of the subroutines are called, a call must be made to ffini to
initialise some arrays of Taylor series coefficients. This routine also tries to establish
the machine precision and range, causing two underflows. If this is a problem (e.g. with
Gould dbx), edit this routine to a hardwired range. Finally it sets up reasonable defaults
for the tracing flags (these are listed in A.5.3). This call is made automatically if one uses
the npoin entry point.

A call to ffexi will check the integrity of these arrays and give a summary of the errors
and warnings encountered.

Finally, on systems on which error trapping is possible it may be advantageous to use a
call

call qsetrec(ffrcvr)

This forwards any floating point errors to the error reporting system. The routine qse-
trec is available in the CERN library.

∗for VAX/VMS one has to add the non-standard READONLY to the open statement
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A.5 The error reporting system

A.5.1 Overview

One of the goals of this package was to give reliable answers. For this purpose a rather
elaborate error reporting system has been built in. First, there are a few flags which
govern the level of internal checking. Secondly, a count of the number of digits lost
in numerical cancellations above some acceptable number (this number is defined for
each function in section A.6) is default returned with any result. This count is quite
conservative. Do not forget the few digits normal everyday loss on top of the reported losses,
however: the ‘acceptable’ loss. Finally, a message can be given to the user where the
error or warning occurred. For this to be useful, the user has to update some variables.

A.5.2 Using the system

Errors

A distinction is made between errors and warnings. An error is an internal inconsis-
tency or a floating point error (if trapped). If an error occurs a message is printed on
standard output like this (the output is truncated to fit on the page)

id nr 41/ 7, event nr 16

error nr 32: nffeta: error: eta is not defined for real ...

The first part of the id must be defined by the user. It is given by the variable id in the
common block /ffflags/. I tend to use ’41’ for the first four-point function, ’42’ for the
second one, etc:

id = 41

call ffxd0(cd0,xpi1,ier)

id = 42

call ffxd0(cd0,xpi2,ier)

The second part (idsub) is maintained internally to pinpoint the error. The event num-
ber is assumed to be nevent in the same common block. It too has to be incremented
by the user. The error number is used internally to fetch the message text from the file



36 APPENDIX A. THE ORIGINAL FF MANUAL

fferr.dat, which also includes the name of the routine in which the error occurred. If
an error has occurred the variable ier is incremented by 100.

A call to fferr with the error number 999 causes a list of all errors so far to be printed
out and this list to be cleared. This is used by ffexit.

Warnings

A warning is a loss of precision because of numerical cancellations. Only losses greater
than a certain default value are noticed. This is controlled by the variable xloss in
the common block /ffprec/, which is set to 1/8 by ffini. A power of 2 is highly
recommended. If a loss of precision greater than this tolerable, everyday loss occurs the
subroutine ffwarn is called. The default action is to only increment the variable ier by
the number of digits lost over the standard tolerated loss of xloss. Nothing is printed,
but all calls occurring with the same value of the event counter nevent are remembered.
This queue is printed when ffwarn is called with error number 998.

The reason for this is simply that I do not like hundreds of meaningless warnings to
clutter the important ones in a big Monte Carlo. I therefore include a line like

if ( ier .gt. 10 ) call ffwarn(998,ier,x0,x0)

at the end of the calculation of one event, causing the system to report only those errors
which led to a fatal loss of precision. The warning messages produced are similar to an
error message:

id nr 41/ 4, event nr 2265

warning nr 138: ffdl3p: warning: cancellations in \delta_{...

(lost 1 digits)

The number of digits lost gives the number of digits which have become unreliable in
the answer due to this step over the normal loss of xloss.

Another special error number is 999: this causes a list of all warnings which have oc-
curred up to that point to be printed out plus the maximum loss suffered at that point.
The routine ffexi uses this.

There is one warning message which does not increase ier: the remark that there are
cancellations among the input parameters. This is the responsibility of the user. Most
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routines have an alternative entry point with the differences of the parameters required
as input.

The user can edit the routines ffwarn and fferr (in the file ffini) to customize the error
and warning reporting.

A.5.3 Debugging possibilities

There are a few flags to control the package in great detail. These are contained in the
common block /ffflags/. The first one, lwrite, if on, gives a detailed account of all
steps taken to arrive at the answer. This gives roughly 1000 lines of output for a four-
point function. It is turned off by ffini. The second one, ltest, turns on a lot of internal
consistency checking. If something is found wrong a message like

ffdot4: error: dotproducts with p(10) wrong: -1795. ... -9.5E-12

is given. The last number gives the deviation from the expected result, in this case a
relative precision of 10−15 was found instead of the expected 10−16. The ier counter is
not changed, as these are usually rounding off errors. Please report any serious errors.
This flag is turned on by ffini, turn it off manually once you are convinced that your
corner of parameter space does not present any problems.

The next two flags, l4also and ldc3c4, control the checking of some extra algorithms.
This takes time and may even lead to worse results in some rare cases. If you are pressed
for speed, try running with these flags off and only switch them on when you get the
warning message “Cancellations in final adding up”. If you get mysterious warn-
ings with the flags on, try turning them off.

Another flag for internal use, lmem controls a rudimentary memory mechanism which
is mainly used when trying different permutations of the parameters of the three- and
four-point functions. Its use is taken care of by the system.

Next there is the possibility to save the array of dotproducts used by the three and four-
point function. These arrays are used by the tensor integrals.

Finally there is the possibility to to turn off all warning reporting by setting lwarn to
.FALSE.. Do not do this until you are completely satisfied that there are no problems
left! It will also invalidate the value of ier, so you will have no warning whatsoever if
something goes horribly wrong.
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It may be advantageous to change the flags to parameters and recompile for extra speed
and smaller size. Approximately half the code of the package is for debugging purposes.

A.5.4 Summary

The following sequence has been found to be very convenient.

a) Make sure that the system can find fferr.dat and ffwarn.dat and that the routine
ffini is called.

b) Do a pilot run with ltest on to check for internal problems within the FF routines.
One can also look for the best permutation of the input parameters at this stage.
Please report anything irregular.

c) Run a full Monte Carlo with ltest off, but lwarn still on to check for numerical
problems.

d) Only if there are no numerical problems left, you can turn off lwarn to gain the last
percents in speed.

A.6 Scalar n-point functions

In general there are two routines for almost every task: one for the case that all parame-
ters are real and one to use if one or more are complex. Infra-red divergent diagrams are
calculated with a user-defined cutoff on the divergent logarithms. Planned extensions
are

• the derivative of B0,

• fast special cases,

• six-point functions.

Please note that there is also an entry-point npoin which returns the scalar integrals plus
the supported tensor integrals in a form compatible with FormF. The number of digits
lost cannot be included this way, however. It is provided on request to allow old code
which used FormF to run without a CDC.
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A.6.1 One-point function

The one-point function ca0 = A0(m2) = 1
iπ2

∫
dnQ/(Q2 − m2) is calculated with the sub-

routines

subroutine ffca0(ca0,d0,xmm,cm,ier)

integer ier

DOUBLE COMPLEX ca0,cm

DOUBLE PRECISION d0,xmm

subroutine ffxa0(ca0,d0,xmm,xm,ier)

integer ier

DOUBLE COMPLEX ca0

DOUBLE PRECISION d0,xmm,xm

with d0 = Δ = −2/ε− γ + log(4π) the infinity from the renormalisation scheme and the
mass xmm = μ arbitrary. The final result should not depend on it. xm = m2 is the internal
mass squared. This is of course a trivial function.

A.6.2 Two-point function

Calling sequence

The two-point function cb0 = B0(m2
a, m2

b, k2) is calculated in the subroutines

subroutine ffcb0(cb0,d0,xmu,ck,cma,cmb,ier)

integer ier

DOUBLE COMPLEX cb0,ck,cma,cmb

DOUBLE PRECISION xmu,d0

subroutine ffxb0(cb0,d0,xmu,xk,xma,xmb,ier)

integer ier

DOUBLE COMPLEX cb0

DOUBLE PRECISION d0,xmu,xk,xma,xmb

with d0 and xmm as in the one-point function. xk = k2 in Bjørken and Drell metric
(+ −−−) and xma,b = m2

a,b are the internal masses squared.
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Comments

The maximum loss of precision without warning in the scalar two-point function is
(xloss)3 in the basic calculation plus xloss when adding the renormalisation terms.
Numerical instabilities only occur very close to threshold (k2 ≈ (ma+mb)2). The function
can run into underflow problems if both |ma − mb| � ma and |k2| � m2

a . Note that this
function uses Pauli metric (+ + +−) internally.

A.6.3 Three-point function

Calling sequence

The three-point function cc0 = C0(m2
1, m2

2, m2
3, p2

1, p2
2, p2

3) is calculated in the subroutines

subroutine ffcc0(cc0,cpi,ier)

integer ier

DOUBLE COMPLEX cc0,cpi(6)

subroutine ffxc0(cc0,xpi,ier)

integer ier

DOUBLE COMPLEX cc0

DOUBLE PRECISION xpi(6)

The array xpi should contain the internal masses squared in positions 1–3 and the
external momenta squared in 4–6. The momentum xpi(4) = p2

1 is the one between
xpi(1) = m2

1 and xpi(2) = m2
2, and so on cyclically. The routine rotates the diagram to

the best position, so only the swap m2
1 ↔ m2

3, p2
1 ↔ p2

2 can be used to test the accuracy.

There is an alternative entry point which can be used if there are significant cancellations
among the input parameters.

subroutine ffxc0a(cc0,xpi,dpipj,ier)

integer ier

DOUBLE COMPLEX cc0

DOUBLE PRECISION xpi(6),dpipj(6,6)

All differences between the input parameters should be given in the array
dpipj(i,j) = xpi(i) - xpi(j).
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In the testing stages one can use

subroutine ffcc0r(cc0,cpi,ier)

integer ier

DOUBLE COMPLEX cc0,cpi(6)

subroutine ffxc0r(cc0,xpi,ier)

integer ier

DOUBLE COMPLEX cc0

DOUBLE PRECISION xpi(6)

It tries 2 different permutations of the input parameters and the two different signs of
the root in the transformation and takes the best one. This permutation can later be
chosen directly in the code.

If the requested three-point function is infra-red divergent (i.e. one internal mass 0 and
the other two on-shell) the terms log(λ2), with λ the regulator mass, are replaced by
log(δ). In all other terms the limit λ → 0 is taken. The value of the cutoff parameter
delta = δ should be provided via the common block /ffcut/, in which it is the first
(and only) variable. This infra-red option does not yet work in case some of the masses
have a finite imaginary part.

Comments

The maximum loss of precision without warning is (xloss)5. Numerical instabilities
again occur very close to thresholds (p2

i ≈ (mi + mi+1)2). There are discrepancies with
FormF for t-channel diagrams in case t → 0, but there are good reasons to distrust
FormF there (the limit is not approached smoothly).

The Z vertex correction to an eeγ vertex with one of the electrons slightly off-shell is
stable only for one mirror image.

A.6.4 Four-point function

Calling sequence

cd0 = D0(m2
1, m2

2, m2
3, m2

4, p2
1, p2

2, p2
3, p2

4, (p1 + p2)2, (p2 + p3)2), the four-point function, is
calculated in the subroutine
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subroutine ffxd0(cd0,xpi,ier)

integer ier

DOUBLE COMPLEX cd0

DOUBLE PRECISION xpi(13)

The array xpi should contain the internal masses squared in positions 1–4, the external
momenta squared in 5–8 and s = (p1 + p2)2, t = (p2 + p3)2 in 9–10. Positions 11–13
should contain either 0 or

xpi(11) = u = +xpi(5)+xpi(6)+xpi(7)+xpi(8)-xpi(9)-xpi(10)

xpi(12) = v = -xpi(5)+xpi(6)-xpi(7)+xpi(8)+xpi(9)+xpi(10)

xpi(13) = w = +xpi(5)-xpi(6)+xpi(7)-xpi(8)+xpi(9)+xpi(10)

Unfortunately the complex four-point function does not yet exist in a usable form.

There are two alternative entry points. The first one can be used if there are significant
cancellations among the input parameters.

subroutine ffxd0a(cd0,xpi,dpipj,ier)

integer ier

DOUBLE COMPLEX cd0

DOUBLE PRECISION xpi(13),dpipj(10,13)

in which these last elements are required and all differences between the input param-
eters are given in dpipj(i,j) = xpi(i) - xpi(j).

The second one can be used in the testing stages.

subroutine ffxd0r(cd0,xpi,ier)

integer ier

DOUBLE COMPLEX cd0

DOUBLE PRECISION xpi(13)

It tries 6 different permutations of the input parameters and the two different signs of
the root in the transformation and takes the best one. This permutation can later be
chosen directly in the code.

If the requested four-point function is infra-red divergent (i.e. one internal mass 0 and
the adjoining lines on-shell) the terms log(λ2), with λ the regulator mass, are replaced
by log(δ). In all other terms the limit λ → 0 is taken. The numerical value of delta = δ

should be placed in a common block /ffcut/. Due to problems in the transformation at this
moment at most one propagator can have zero mass.
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Comments

The maximum loss of precision without warning is (xloss)7. There may be problems
with diagrams with masses and/or momenta squared exactly zero. If you get a division
by zero or the like try with a small non-zero mass.

The following diagrams are known not give an accurate answer:

a) Again, any configuration with an external momentum very close to threshold.

b) γγ → γγ for s � m2

A.6.5 Five-point function

Calling sequence

The five-point function ce0 = E0(m2
i , p2

i , (pi + pi+1)2, i = 1, 5) and the five four-point
functions which one obtains by removing one internal leg are calculated in the subrou-
tine

subroutine ffxe0(ce0,cd0i,xpi,ier)

integer ier

DOUBLE COMPLEX ce0,cd0i(5)

DOUBLE PRECISION xpi(20)

The array xpi should contain the internal masses squared in positions 1–5, the external
momenta squared in 6–10 and the sum of two adjacent external momenta squared in 11–
15 (the analogons of s and t in the four-point function). Positions 16–20 should contain
either 0 or (pi + pi+2)2 (the analogon of u).

There are two alternative entry points. The first one can be used if there are significant
cancellations among the input parameters.

subroutine ffxe0a(ce0,cd0i,xpi,dpipj,ier)

integer ier

DOUBLE COMPLEX ce0,cd0i(5)

DOUBLE PRECISION xpi(20),dpipj(15,20)

in which these last elements are required and all differences between the input param-
eters are given in dpipj(i,j) = xpi(i) - xpi(j).
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The second one can be used in the testing stages.

subroutine ffxe0r(ce0,cd0i,xpi,ier)

integer ier

DOUBLE COMPLEX ce0,cd0i(5)

DOUBLE PRECISION xpi(20)

It tries the 12 different permutations of the input parameters and the two different signs
of the root in the transformation and takes the best one. This permutation can later be
chosen directly in the code.

Comments

The five-point function has not yet been adequately tested.

The maximum loss of precision without warning is (xloss)7. There may be problems
with diagrams with masses and/or momenta squared exactly zero. If you get a division
by zero or the like try with a small non-zero mass.

A.7 Tensor integrals

At this moment only the vector two, three and four-point functions are available, of
which the two-point functions is very badly implemented. These tensor integrals are
scheme-independent, the higher order functions differ between the Passarino-Veltman
scheme [PaV79] and the kinematical determinant scheme described in [vOV90].

A.7.1 Vector integrals

Two-point function

The vector two-point function B1pμ =
∫

dnQμ/(Q2 − m2
1)((Q + p)2 − m2

2) is calculated in

subroutine ffxb1(cb1,cb0,ca0i,xp,xm1,xm2,ier)

integer ier

DOUBLE PRECISION xp,xm1,xm2

COMPLEX cb1,cb0,ca0i(2)
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The input parameters are cb0 = B0 the scalar two-point function, ca0i(i) = A0(m2
i ) the

scalar one-point functions and the rest as in ffxb0. This function must/will be improved.

Three-point function

The subroutine for the evaluation of the vector three-point function C11pμ
1 + C12pμ

2 =∫
dnQμ/(Q2 − m2

1)((Q + p1)2 − m2
2)((Q + p1 + p2)2 − m2

3) is

subroutine ffxc1(cc1i,cc0,cb0i,xpi,piDpj,del2,ier)

integer ier

DOUBLE PRECISION xpi(6),piDpj(6,6),del2

COMPLEX cc1i(2),cc0,cb0i(3)

The required input parameters are cc0 = C0 the scalar three-point function, cb0i(i)
the two-point functions with m2

i missing: cb0i(1) = B0(p2
2, m2

2, m2
3). Further xpi are the

masses as in ffxc0 and piDpj, del2 the dotproducts and kinematical determinant as
saved by ffxc0 when ldot is .TRUE.

Four-point function

The calling sequence for the vector four-point function cd1i which returns D11, D12, D13,
the coefficients of pμ

1 , pμ
2 and pμ

3 is

subroutine ffxd1(cd1i,cd0,cc0i,xpi,piDpj,del3,del2i,ier)

integer ier

DOUBLE PRECISION xpi(13),piDpj(10,10),del3,del2i(4)

COMPLEX cd1i(3),cd0,cc0i(4)

The input parameters are as follows. cd0 = D0 is the scalar four-point function,
cc0i(i) = C0(without mi) the scalar three-point functions, xpi the masses as in ffxd0

and piDpj, del3 and del2i the dotproducts and kinematical determinant as saved by
ffxd0 and ffxc0 when ldot is .TRUE.

A.8 Determinants

A knowledge of a few of the determinant routines may be useful to the user as well.
On the one hand they can be used in other parts of the calculation, e.g. in the reduction
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to scalar integrals, but they also are the place where the numerical instabilities have
been concentrated. It is often useful or even necessary to import the required determi-
nants directly from the kinematics section. We therefore list all the routines calculating
determinants of external vectors and some containing internal vectors.

A.8.1 2 × 2 determinants

To calculate the 2× 2 determinant del2 = δ
pi1 pi2
pi1 pi2

, p3 = −(p1 + p2), given the dotproducts
use

subroutine ffcel2(del2,piDpj,ns,i1,i2,i3,lerr,ier)

integer ns,i1,i2,i3,lerr,ier

DOUBLE COMPLEX del2,piDpj(ns,ns)

subroutine ffdel2(del2,piDpj,ns,i1,i2,i3,lerr,ier)

integer ns,i1,i2,i3,lerr,ier

DOUBLE PRECISION del2,piDpj(ns,ns)

In this piDpj(i,j) = pi · pj is the dotproduct of vectors pi and pj, i1,i2,i3 give the
position of the three vectors of which the determinant has to be calculated in this array.
lerr should be 1.

If the dotproducts are not known there is a routine for xlambd = λ(a1, a2, a3), which is -2
times the determinant if ai = p2

i .

subroutine ffclmb(clambd,cc1,cc2,cc3,cc12,cc13,cc23,ier)

integer ier

DOUBLE COMPLEX clambd,cc1,cc2,cc3,cc12,cc13,cc23

subroutine ffxlmb(xlambd,a1,a2,a3,a12,a13,a23,ier)

integer ier

DOUBLE PRECISION xlambd,a1,a2,a3,a12,a13,a23

The aij = ai - aj are again differences of the parameters in these routines.

An arbitrary 2 × 2 determinant δ
pi1 pi2
pj1 pj2

can be obtained from ffdl2i:

subroutine ffdl2i(dl2i,piDpj,ns,i1,i2,i3,isn,j1,j2,j3,
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+ jsn,ier)

integer ns,i1,i2,i3,isn,j1,j2,j3,jsn,ier

DOUBLE PRECISION dl2i,piDpj(ns,ns)

Here the vector pi3 = isn(pi1 +pi2) and analogously for j. (Note that the sign is important
here).

If there is no connection between the two vectors one should use

subroutine ffdl2t(dlps,piDpj,i,j,k,l,lk,islk,iss,ns,ier)

integer in,jn,ip1,kn,ln,lkn,islk,iss,ns,ier

DOUBLE PRECISION dlps,piDpj(ns,ns)

to calculate δ
pi pj
pk pl with plk = islk(isspl − pk) and no relationship between pi, pj assumed.

A.8.2 3 × 3 determinants

To calculate the 3× 3 determinant dl3p = δ
pi1 pi2 pi3
pi1 pi2 pi3

given the dotproducts piDpj, one can
use

subroutine ffdl3p(dl3p,piDpj,ns,ii,ier)

integer ns,ii(6),ier

DOUBLE PRECISION dl3p,piDpj(ns,ns)

The array ii(j) gives the position of the vectors of the determinant has to be calculated
in this array. We assume that pii(4) = −pii(1) − pii(2) − pii(3), pii(5) = pii(1) + pii(1) and
pii(6) = pii(2) + pii(3), with all vectors incoming.

The 3 × 3 determinant dl3q = δ
si1 pi2 pi3
pi1 pi2 pi3

, which occurs in expressions for tensor integrals,
is calculated by

subroutine ffdl3q(dl3q,piDpj,i1,i2,i3,j1,j2,j3,

+ isn1,isn2,isn3,jsn1,jsn2,jsn3,ier)

integer i1,i2,i3,j1,j2,j3,isn1,isn2,isn3,jsn1,jsn2,jsn3,

+ ier

DOUBLE PRECISION dl3q,piDpj(10,10)

Now the only assumptions that are made are that pjn = jsnn(pin − isnnpin+1) if jn is
unequal to zero. This routine should still be extended.
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A.8.3 4 × 4 determinants

To calculate the 4 × 4 determinant dl4p = δ
pi1 pi2 pi3 pi4
pi1 pi2 pi3 pi4

given the dotproducts piDpj, one
can use

subroutine ffdl4p(dl4p,piDpj,ns,ii,ier)

integer ns,ii(10),ier

DOUBLE PRECISION dl4p,piDpj(ns,ns)

The array ii(j) gives the position of the vectors of the determinant has to be calculated
in this array. We assume that pii(5) = −pii(1) − pii(2) − pii(3) − pii(4), pii(n+5) = pii(n) + pii(n+11),
with all vectors incoming again.
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