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Jacobi-type iterative algorithms for the eigenvalue decomposition, singular value decomposition, and Takagi

factorization of complex matrices are presented. They are implemented as compact C and Fortran 77 subroutines

in a freely available library.

1. Introduction

This note describes a set of routines for the
eigenvalue decomposition, singular value decom-
position, and Takagi factorization of a complex
matrix. Unlike many other implementations, the
current ones are all based on the Jacobi algo-
rithm, which makes the code very compact but
suitable only for small to medium-sized problems.
Although distributed as a library, the routines

are self-contained and can easily be taken out of
the library and included in own code, removing
yet another installation prerequisite. Owing to
the small size of the routines (each about 3 kBytes
source code) it is possible, in fact quite straight-
forward, to adapt the diagonalization routine to
one’s own conventions rather than vice versa.

2. Mathematical Background

2.1. Eigenvalue Decomposition

The eigenvalue decomposition of a nonsingular
matrix A ∈ Cn×n takes the form

UAU−1 = diag(σ1, . . . , σn) , σi ∈ C . (1)

The eigenvalues σi and transformation matrix U
can be further characterized if A possesses certain
properties:

• A = A† (Hermitian): U−1 = U †, σi ∈ IR,

• A = AT (symmetric): U−1 = UT .

2.2. Singular Value Decomposition

The singular value decomposition (SVD) can
be applied to an arbitrary matrix A ∈ Cm×n:

V ∗AW † = diag(σ1, . . . , σn̄) , (2)

V ∈ Cn̄×m, W−1 = W † ∈ Cn×n̄,

n̄ = min(m,n) , σi > 0 .

V consists of orthonormal row vectors, i.e. is also
unitary for m = n.

2.3. Takagi Factorization

The Takagi factorization [1,2] is a less known
diagonalization method for complex symmetric
matrices A = AT ∈ Cn×n,

U∗AU † = diag(σ1, . . . , σn) , (3)

U−1 = U † , σi > 0 .

Although outwardly similar to the eigenvalue de-
composition of a Hermitian matrix, it is really the
special case of an SVD with V = W ∗, as it applies
even to singular matrices. Note also that the left
and right factors, U∗ and U †, are in general not
inverses of each other.
One might think that the Takagi factorization

is merely a scaled SVD. For example, the matrix

A =

(

1 2
2 1

)

(4)

has the SVD
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which can indeed be scaled to yield

UT diag(σ1, σ2)U = (6)
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But consider the matrix

A =

(

0 1
1 0

)

(7)

which has the SVD
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)
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whereas its Takagi factorization is
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Although occurring less frequently than the
eigenvalue decomposition, the Takagi factoriza-
tion does have real applications in physics, e.g. in
the diagonalization of mass matrices of Majorana
fermions.

3. Jacobi Algorithm

The Jacobi algorithm [3] consists of iteratively
applying a basic 2×2 diagonalization formula un-
til the entire n × n matrix is diagonal. It works
in several ‘sweeps’ until convergence is achieved.
In each sweep it rotates away the non-zero off-
diagonal elements using the 2× 2 algorithm. Ev-
ery such rotation of course creates other non-zero
off-diagonal elements. It can be shown, however,
that the sum of the absolute values of the off-
diagonal elements is reduced in each sweep. More
precisely, the Jacobi method has quadratic con-
vergence [4].

Convergence is in most cases achieved in 5−10
sweeps, which for an n×n matrix translates into
(10−20)n3 multiply–add operations to obtain the
eigenvalues only and (15−30)n3 operations in-
cluding the eigenvectors ([5], cf. also Sect. 10).
This compares with 2

3
n3+30n2 operations for the

Householder/QL algorithm when just the eigen-
values are sought and 4

3
n3 + 3n3 when also the

eigenvectors are needed.
For large n, the Jacobi algorithm is thus not

the most efficient method. Nevertheless, for small

to medium-sized problems the Jacobi method is
a strong competitor, in particular as it has the
following advantages:

• It is conceptually very simple and thus very
compact.

• It delivers the eigenvectors at little extra cost.

• The diagonal values are accurate to machine
precision and, in cases where this is mathemat-
ically meaningful, the vectors of the transfor-
mation matrix are always orthogonal, almost
to machine precision.

For the various diagonalization problems dis-
cussed before, only the core 2× 2 diagonalization
formula changes, whereas the surrounding Jacobi
algorithm stays essentially the same.
The famous Linear Algebra Handbook gives an

explicit implementation of the Jacobi algorithm
for real symmetric matrices [4], taking particular
care to minimize roundoff errors through mathe-
matically equivalent variants of the rotation for-
mulas. The present routines are closely patterned
on this procedure. For the Takagi factorization,
the use of the Jacobi algorithm was first advo-
cated in two conference papers [6,7] which give
only few details, however. The two-sided Jacobi
version of the SVD is used in [8]. Ref. [9] gives a
more thorough overview of literature on the Ja-
cobi method.

4. The 2 × 2 Formulas

4.1. Eigenvalue decomposition

Using the ansatz

U =

(

c1 t1c1
−t2c2 c2

)

(10)

the equation UA = diag(σ1, σ2)U becomes

σ1 = A11 + t1A21 = A22 +
1

t1
A12 , (11)

σ2 = A11 −
1

t2
A21 = A22 − t2A12 . (12)

Solving for t1 and t2 yields

t1 =
A12

∆+D
, t2 =

A21

∆+D
, (13)
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∆ =
1

2
(A11 −A22) , (14)

D = ±
√

∆2 +A12A21 . (15)

For the numerical stability it is best to choose the
sign of D which gives t1,2 the larger denominator.
This corresponds to taking the smaller rotation
angle (< π/4). The diagonal values are

σ1 = A11 + δ ,

σ2 = A22 − δ ,
δ =

A12A21

∆+D
. (16)

In order that U smoothly becomes unitary as A
becomes Hermitian, we choose

c1 = c2 =
1√

1 + t1t2
, (17)

which guarantees a unit determinant.

4.2. Takagi Factorization

Substituting the unitary ansatz

U =

(

c t c eiϕ

−t c e−iϕ c

)

, (18)

c =
1√

1 + t2
, t ∈ IR , (19)

into U∗A = diag(σ1, σ2)U and introducing

σ̃1 = eiϕσ1 , Ã11 = eiϕA11 , (20)

σ̃2 = e−iϕσ2 , Ã22 = e−iϕA22 , (21)

we arrive at

σ̃1 = Ã11 + tA12 = Ã22 +
1

t
A12 , (22)

σ̃2 = Ã11 −
1

t
A12 = Ã22 − tA12 . (23)

Comparing with Eqs. (11) and (12), the solution
can be read off easily:

t =
A12

∆̃ + D̃
, (24)

∆̃ =
1

2
(Ã11 − Ã22) , (25)

D̃ = ±
√

∆̃2 +A2
12

. (26)

Again it is best for numerical stability to choose
the sign of D̃ which gives the larger denominator
for t. The diagonal values become

σ1 = A11 + t A12 e
−iϕ, (27)

σ2 = A22 − t A12 e
iϕ. (28)

The assumption t ∈ IR fixes the phase ϕ. It re-
quires that A12 and ∆̃ have the same phase, i.e.
∆̃ = (real number) · A12. Since both eiϕ and its
conjugate appear in ∆̃, we try the ansatz

eiϕ = αA12 + βA∗
12 (29)

and choose coefficients to make the A∗
12

term in

∆̃ ∝ (αA11 − β∗A22)A12+

(βA11 − α∗A22)A
∗
12 (30)

vanish. This is achieved by α = A∗
11

and β = A22

which also makes the coefficient ofA12 real. Thus,

eiϕ =
κ

|κ| , κ = A∗
11A12 +A22A

∗
12 . (31)

For vanishing ∆̃ ∝ |A11|2 − |A22|2, the reality
condition is dispensable and α becomes a free pa-
rameter. The choice α = κ̃/A12, β = κ̃2α∗ guards
against κ becoming zero:

eiϕ =
κ̃

|κ̃| , κ̃ =

√

A22

A11

A11→0−−−−→ 1 . (32)

The σi still have an arbitrary phase at this point,
but this is irrelevant for the Jacobi rotations. The
correct phase to ensure σi > 0 is adjusted at the
end via Uij → Uij

√

σi/|σi|, σi → |σi|.

5. Singular Value Decomposition

We insert unitary parameterizations for the left
and right transformation matrices X = V,W ,

X =

(

cX tX cX
−t∗X cX cX

)

, (33)

cX =
1

√

1 + |tX |2
, tX ∈ C , (34)

into V ∗A = diag(σ1, σ2)W and by eliminating
σ1,2 arrive at

A12 +A22t
∗
V = (A11 +A21t

∗
V )tW , (35)
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A21 +A22t
∗
W = (A11 +A12t

∗
W )tV . (36)

The solutions are evidently related through ex-
change of the off-diagonal elements. Explicitly,

tV =
MV

∆V +DV

, (37)

MV = A∗
11
A21 +A22A

∗
12

, (38)

∆V =
1

2
(|A11|2 − |A22|2+
|A12|2 − |A21|2) , (39)

DV = ±
√

∆2

V + |MV |2 , (40)

tW = tV |A12↔A21
. (41)

DV and DW share the same sign, which is chosen
to yield the larger set of denominators for better
numerical stability.

The denominators can become zero, too, which
is the case when Eqs. (35) and (36) are redundant.
We are free to choose tV = 0 then and obtain
tW = A12/A11. If furthermore A11 = 0 (= A22

here) we just swap the rows in A and V .
The singular values become

σ1 =
cV
cW

(A11 + t∗V A21) , (42)

σ2 =
cV
cW

(A22 − tV A12) , (43)

If A ∈ Cm×n is not a square matrix, we con-
sider two cases:

For m > n, we make A square by padding it
with zero-columns at the right. For zero right col-
umn, A12 = A22 = 0, Eq. (43) guarantees that it
is σ2 that vanishes. That is, the above Jacobi ro-
tation never moves a singular value into the zero-
extended part of the matrix and the same is true
for the possible row swap mentioned above. All
singular values automatically end up as the first

min(m,n) diagonal values of the Jacobi-rotated
A thus.

For m < n, we apply this algorithm to AT and
at the end exchange V and W . This is the least
involved solution, as A has to be copied to tem-
porary storage for zero-extension anyway.

6. Installation

The Diag package can be downloaded from the
URL http://feynarts.de/diag. After unpack-

ing the tar file, the library is built with

./configure

make

The generated files are installed into a platform-
dependent directory with “make install” and at
the end one can do a “make clean” to remove
intermediate files.
The Fortran routines in the Diag library al-

locate space for intermediate results according
to a preprocessor variable MAXDIM, defined in
diag-f.h. This effectively limits the size of the
input and output matrices but is necessary be-
cause Fortran 77 offers no dynamic memory allo-
cation. Since the Jacobi algorithm is not particu-
larly suited for large problems anyway, the default
value of 16 should be sufficient for most purposes.
The Diag library by default arranges the trans-

formation matrices as matrices of row eigenvec-
tors (as in the conventions in Sect. 2). This can
be changed to column vectors by configuring with

./configure --cols

The relations between input matrix A, the trans-
formation matrices, and Σ = diag(σ1, . . . , σn) are
then

AU = UΣ {H,S,C}Eigensystem,

AU∗ = UΣ TakagiFactor,

AW ∗ = V Σ SVD.

7. Description of the Fortran Routines

The general convention is that each matrix is
followed by its leading dimension in the argument
list, i.e. the m in A(m,n). In this way it is pos-
sible to diagonalize submatrices with just a dif-
ferent invocation. Needless to add, the leading
dimension must be at least as large as the corre-
sponding matrix dimension.

7.1. Hermitian Eigenvalue Decomposition

Hermitian matrices are diagonalized with

subroutine HEigensystem(n, A,ldA,

d, U,ldU, sort)

integer n, ldA, ldU, sort

double complex A(ldA,n), U(ldU,n)

double precision d(n)
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The arguments are as follows:

• n (input), the matrix dimension.

• A (input), the matrix to be diagonalized. Only
the upper triangle of A needs to be filled and it
is further assumed that the diagonal elements
are real. Attention: the contents of A are not
preserved.

• d (output), the eigenvalues.

• U (output), the transformation matrix.

• sort (input), a flag that determines sorting of
the eigenvalues:

0 = do not sort,

1 = sort into ascending order,

−1 = sort into descending order.

The ‘natural’ (unsorted) order is determined by
the choice of the smaller rotation angle in each
Jacobi rotation.

7.2. Symmetric Eigenvalue Decomposition

The second special case is that of a complex
symmetric matrix:

subroutine SEigensystem(n, A,ldA,

d, U,ldU, sort)

integer n, ldA, ldU, sort

double complex A(ldA,n), U(ldU,n)

double complex d(n)

The arguments have the same meaning as for
HEigensystem, except that A’s diagonal elements
are not assumed real and sorting occurs with re-
spect to the real part only.

7.3. General Eigenvalue Decomposition

The general case of the eigenvalue decomposi-
tion is implemented in

subroutine CEigensystem(n, A,ldA,

d, U,ldU, sort)

integer n, ldA, ldU, sort

double complex A(ldA,n), U(ldU,n)

double complex d(n)

The arguments are as before, except that A has
to be filled completely.

7.4. Takagi Factorization

The Takagi factorization is invoked in almost
the same way as SEigensystem:

subroutine TakagiFactor(n, A,ldA,

d, U,ldU, sort)

integer n, ldA, ldU, sort

double complex A(ldA,n), U(ldU,n)

double precision d(n)

The arguments are as for SEigensystem. Also
here only the upper triangle of A needs to be filled.

7.5. Singular Value Decomposition

The SVD routine has the form

subroutine SVD(m, n, A,ldA,

d, V,ldV, W,ldW, sort)

integer m, n, ldA, ldV, ldW, sort

double complex A(ldA,n)

double complex V(ldV,m), W(ldW,n)

double precision d(min(m,n))

with the arguments

• m, n (input), the dimensions of A.

• A (input), the m × n matrix of which the SVD
is sought.

• d (output), the singular values.

• V (output), the min(m, n)×m left transformation
matrix.

• W (output), the min(m, n)× n right transforma-
tion matrix.

• sort (input), the sorting flag with values as
above.

8. Description of the C Routines

The C routines are implemented and used ex-
actly as their Fortran counterparts, except that
the prototypes in CDiag.h should be included.
CDiag.h introduces the new Complex type to

homogeneously treat complex numbers in C and
C++. It is equivalent to double complex in
C(99) and to complex<double> in C++.
C’s syntax unfortunately does not allow the

declaration of variable-size matrices as function
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arguments, thus it is not possible for CDiag.h to
set up the prototypes to directly accept C matri-
ces without compiler warnings. To simplify mat-
ters, CDiag.h defines the macro Matrix which is
used as in

Complex A[5][3], V[3][5], W[3][3];

double d[3];

...

SVD(5, 3, Matrix(A), d,

Matrix(V), Matrix(W), 0);

This is equivalent to using an explicit cast and
passing the leading dimension, i.e.

SVD(5, 3, (Complex *)A,3, d,

(Complex *)V,5,

(Complex *)W,3, 0);

9. The Mathematica Interface

The Mathematica version may not seem as use-
ful as the library since Mathematica already has
perfectly functional eigen- and singular value de-
compositions. The Takagi factorization is not
available in Mathematica, however, and moreover
the interface is ideal for trying out, interactively
using, and testing the Diag routines.

The Mathematica executable is loaded with

Install["Diag"]

and makes the following functions available:

• HEigensystem[A] computes the eigenvalue de-
composition {d, U} of the Hermitian matrix A.

• SEigensystem[A] computes the eigenvalue de-
composition {d, U} of the symmetric matrix A.

• CEigensystem[A] computes the eigenvalue de-
composition {d, U} of the general matrix A.

• TakagiFactor[A] computes the Takagi factor-
ization {d, U} of the symmetric matrix A.

• SVD[A] computes the singular value decompo-
sition {V, d, W} of the matrix A.

Note that these routines do not check whether
the given matrix fulfills the requirements, e.g.
whether it is indeed Hermitian.

10. Timings

The following plot shows the time for diago-
nalizing a random matrix of various dimensions.
Note that the abscissa is divided in units of the di-
mension cubed; this accounts for the anticipated
scaling behaviour of the Jacobi algorithm, hence
the curves appear essentially linear.
The absolute time values should be taken for

orientation only, as they necessarily reflect the
CPU speed. For reference, the numbers used in
the figure above were obtained on an AMD64-X2
CPU running at 3 GHz. Each point is actually
the average from diagonalizing 106 random ma-
trices, to reduce quantization effects in the time
measurement.
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The average number of sweeps needed to diag-
onalize the 106 random matrices to machine pre-
cision is plotted in the next figure.
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11. Summary

The Diag package contains C and Fortran sub-
routines for the eigenvalue decomposition, singu-
lar value decomposition, and Takagi factorization
of a complex matrix. The library is supplemented
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by interfacing code to access the routines from
Mathematica.
The routines are based on the Jacobi algorithm.

They are self-contained and quite compact, thus
it should be straightforward to use them outside
of the library. All routines are licensed under the
LGPL.
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